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Dynamics in a system with time-delayed feedback
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In this paper we study the dynamical solutions of a differential delay equation related to optical bistability.
Besides the fundamental solution and the odd harmonic solution, we report different types of solutions found
in moderate- and short-time delay regions, which to our knowledge, have not been discussed in earlier publi-
cations. In addition, we also study the quasiperiodic motion and the chaotic itinerancy solution of the equation.
The phenomena reported in this paper are found to be the general features of delayed feedback optical systems.
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[. INTRODUCTION system, as pointed out by Li and H&b2]. In the limiting
case ofr=0, Eq.(2) reduces to
In recent years, optical feedback systems governed by dif-
ferential delayed equatiof®DE’s) have attracted much at- X(t)=f(x(t—1),u). 4
tention from both the applied and the fundamental points of
view [1-13]. Some properties of these systems have beehkor the specific choice of the feedback function, E4).is
exposed, such as the odd harmonic solutifins3] whose just the logistic model. As the logistic model plays a crucial
oscillation period is given byTg/(2k+1), where k role in understanding the common behavior of low-
=1,2,3... andT is the period of the fundamental motion; dimensional dissipative nonlinear systems, we expect that
the frequency locking and quasiperiodicity following the hi- Eg. (2) with the feedback functiofB) may provide us with a
erarchy of the Farey tregt—8J; and the chaotic itinerancy fundamental scenario for the dynamics in systems with de-
phenomenof9-11], the phenomenon that a dynamical sys-layed feedback.
tem switches among different unstable local chaotic orbits on  We organize this paper as follows. In Sec. Il numerical
a time scale long compared to the dynamics on each attractorethods used in the paper are introduced. These methods are
ruin. These features, however, are summarized from differertpplied to identify different types of dynamical states. In
systems. Questions arising from the above observations aféec. lll numerical results are presented. After clarifying the
the following. Can we meet all these phenomena in everjundamental solution of the system in Sec. Ill A, we describe
optical system governed by DDE’s? Can we find any othedifferent types of solutions found in the long-, moderate-,
types of solutions in these kinds of systems? and short-time delay regions in Secs. IlI B, Il C, and Il D
In general, the delay-differential system related to opticarespectively. Section IV summarizes the main findings of the
bistable or hybrid optical bistable device is described by paper. In this section we also discuss to what extent the
dynamical behaviors reported in the paper are the general

7 X(t) = —x(t) + F(X(t—tg), 1), (1)  features of the delayed feedback systems.
wherex(t) is the dimensionless output of the system at time Il. NUMERICAL METHODS
t, tg is the time delay of the feedback loop’ is the re- _ .
sponse time of the nonlinear medium, and the parameisr Equation(2) can only be solved numerically and a fourth-
proportional to the intensity of the incident light. Measuring Ofder Adam’s interpolation is suitable for that. In order to
the time in units oftg, we rewrite Eq.(1) as trace the evolution of a DDE, one might investigate the evo-
lution curve of the variablex(t). However, it is difficult to
(1) = —x(t)+ Fx(t—1), 1) ?) distinguish different solutions if one only observes {g)-t

relation. Some of us have described a method in R&f.

wherer= 7'/t characterizes the effect of the delay when where we represented the solutions of a one-variable DDE

is fixed. In this paper we study E(R) with the special feed- PY using the Poincareection technique. This method has
back function proved to be a useful tool in exploring the coexisting attrac-

tors. Let us review this method briefly. Let(6)=x(t
f(x,u)=1— ux>. 3) +6), —1<6<0; then Xt2(9) is determined byxtl(a)
uniquely according to Eq(2), wheret;<t,. We approach
This feedback function can be considered as the first nonlinthe section mapping as follows. We choose an appropriate
ear term of the Taylor expansion of the general nonlineaconstantx.e R; integrate Eq.(2) numerically until x(t)
function f(x, ) in the vicinity of a steady state. It should >x. andx(t+h)<x., whereh is the length of the integrat-
keep the general nonlinear properties of the delay feedbadkg step; and then proceed with a simulation procedure or
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FIG. 1. Coexisting attractors at=0.81 andu=4.619.

apply Hewon's idea[14] to gett; as well asx, () such that
xti(0)=xc. To simplify, we denoteqi(a) as x;(0) in the

following discussion. In this way we convert the flow of Eq.

(2) into a mapping that maps the curyg #) onto the curve
Xi+1(6). We regard this curve-to-curve mapping as the Pointra of solutions in them are unalike. The solutionsMnand
care map of a DDE. A periodic solution of Eq2) with
period T, x(t)=x(t+T), corresponds to a periodic solution close to each other, their appearances are similar, and their
of the Poincaranap with periodN, x;(6)=x;.n(6), where
N is an integer. For practical applications, we can take Throughout the paper, when we mention solutions belonging
discrete pointsx;(6;) on the curvex;(6) to represent the to the same or different types we actually mean that they are
solution, wheref; e (—1,0) andj=1,2,...n. Then the
curve-to-curve mapping appears as a point-to-point mappintgn order to study the bifurcation process we employ Farmer’s
in R". In order to exhibit the coexisting attractors or showtechnique{13] to calculate the Lyapunov exponents.
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the bifurcation process, we usually need only a two-
dimensional mapping representati¢r;(6,),%;(6,)] or a
one-dimensional mapping representatioii6,). Figure 1
demonstrates a two-dimensional mapping representation of
the solutions of Eq2) with the feedback functio(B), where
three coexisting attractors denoted Bg, M, andM’ are
shown in thex;(—0.08)x;(—0.2) plane.

After obtaining the Poincaremap, we use the definition

T=Iim%2 (tiy1—t) ®)

| —

to characterize the oscillation period &{t). To identify
different dynamical states, we usually compare the oscilla-
tion periods, see the appearances, and analyze the power
spectra of them. Figure 2 shows the appearances and the
corresponding power spectra of solutions in the three attrac-
tors marked in Fig. 1T, T,, andT; in the figure are the
oscillation periods of solutions ifS, M, andM’, respec-
tively. One can find that S andM belong to different types:

The oscillation periods, the appearances, and the power spec-

M’ belong to the same type: Their oscillation periods are

main components in the power spectra are identical.

identified to be so according to the above procedure. Finally,
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FIG. 2. Evolution curves and power spectra of the three coexisting attractors shown in Figalleod (d) FS, (b) and (B) M, and

(c)and (¢)M".
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FIG. 3. Bifurcation phenomena of the systef8, the fundamental solutionsS, the short-time delay solutiongM]', the moderate-time
delay solutionsH?, the harmonic solutions. See the text for more details.

. RESULTS unstable in the case af>0. We call the parameter regime in
. which x, is stable “steady state” regime in this paper.
. t + . . -
_ A. Fundamental solution of the system At u=puo(7), the steady state, bifurcates into a limit
Equations(2) and (4) have the same steady states=  cycle through the Hopf bifurcation. The limit cycle appears

(—1=1+4u)/2u in the specific choice of the feedback as a period-1 solution of the Poincarap of Eq.(2); there-
function (3). These two steady states are createduat fore, we call it the period-1 periodic solution of the system.
—1/4 through tangential bifurcation. It is found that is  Figure 3 shows the bifurcation diagrdmhich is represented

stable in the regime of 1/4<u<<puq(7) while x_ is always by x;(—0.08)— w] originating from the period-1 periodic so-
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lution, which is denoted b¥S. The solutions irFS appear 012
as square waves with oscillation period 2 wheapproaches .
zero. They are the analogs of the fundamental solution of the 104 steady state
model (4). Therefore, we regarefS as the fundamental so- 1
lution of the system. 0.08

Numerical calculations indicate that there exist many . ©: (FS, Hj, Hg, H3)
separated attractors besideS in the parameter plane. In 0.06 ®: (FS, Hy, H})
Fig. 3 we show some of them. These solutions can be clas 1 1| @ (F8H))
sified into different classes. Solutions in the first class, e.g., 044
theF’S’ marked in Fig. &), possess approximate oscillation
periods, similar appearances, and power spectra to thos . | .
analogous ofFS. In fact, tracking them on the parameter | p=075 |,/
plane with the decrease af we find that they must merge 000
into FS at a certain value of, i.e., they turn to the periodic "7 025 000 025 050 075 100 125 150 175 200 225
windows of FS. Therefore, this class of coexisting attractor m
should be included in the category of the fundamental solu-
tion. The other three classes of solutions are indeed specific FIG. 4. Domains of the different dynamical states in the long-
solutions in the long-time delay regidtne solutions denoted time delay region. Dot-dashed lines, boundaries of the escaping and
by Hﬁ, with n an odd integer moderate-time delay region bounded sol_utlon r(_eglr_’nes; dashed _Ilnes, boundaries qf the fl_Jnda-
(the solutions denoted bM\/Inm, with k, m, n and integers mental solution; sqlld lines, bounde_lrles_ of_ the ha_ramonlc solutions.

. - . # denotes the regime where quasiperiodic solutions can be found.

\?v?t?] I‘:‘Ti%rti-r:ltrggee)d?l'lﬁZsreegi)c:St?gnic\)/:/lijlrgzsdi(iizts)tsee?j i?]yiyetail The circle-enclosed numbers mark the chaotic itinerancy regimes.
in the following subsections.

In the present subsection we describe the bifurcation pr
cess of the fundamental solution only. In the regime thist

escape
egcape ‘\

0c_)f the fundamental solution at the same valueroénd k
=1,2,3.... Thus they are just the odd harmonic solutions
very large or, identically, the delay tintg is very shortFS of the system. The odd harmonic solution has begn found to
shows no bifurcation. It is connected with a periodic solutionP€ & general feature of the delayed feedback optical systems

of another dynamical stateS [see Figs. @—-3(c)]. With the ~ [1=3]- In this paper we use the notatieth, , ; to character-
decrease of, FS begins to disconnect fromsS at r=2.9. ize the harmonic solution, i.e., the capital letterepresents
Below this valueFS and ;S coexist in a certain parameter the “harmonic solution” while the superscript and the sub-
region; see Figs. @)—3(g). (In the region ofr<1, ;S is script indicate the ratio of the oscillation period of the har-
marked by,M2, which will be explained in Sec. I DAt Monic solution to that of the fundamental solution.

7=1.13, FSundergoes the first period-doubling bifurcation. In fact, we can show that the qdd harmoni'c motion is the
Figure 3e) shows a bifurcation diagram just below this particular behavior of the system in the long-time delay case.

value. When decreasing continuously, period-doubling bi- Letx(t) be a period-1 solution of the fundamental solution at

furcations with higher and higher order take place until cha-(T"“) andTg(7) denote its perloq. Since(t—kTg) =x(t)
otic solutions appear at=0.84.FS exhibits similar bifurca- (K is any integex, x(t) satisfies7x(t) = —x(t) + f(x(t—1
tion behavior, as shown in Fig.(f3, in the region of 0.84 —KTg),x). By measuring the time with 1+kTg, one can
>7>0.76. In the region of-<0.76 the bifurcation diagram rewrite this equation asrx(t)=—x(t)+f(x(t—1),u),
of FS is divided into two parts by an embedded escapingvhere 7= 7/(1+kTg). This means thatx(t) is also a
region; see Fig. @). The right-hand part disappears at period-1 solution of Eq(2) with period
=0.64 and the left-hand part survives unti 0.

Finally, for the convenience of later discussion, let us de- T(r)=Te(7)/[1+kTe(7)] (6)
scribe briefly the dependence of the oscillation period of the
fundamental solution on the system paramejerand 7. In at ,=7/[1+KkTe(7)]. Let Te(7) be the oscillation period
the region thatr is not very large the oscillation period in- of the period-1 solution of the fundamental solution at
creases a3 ~2+ 37/2 with the increase of. Thus oscilla-  (7,,u). In the region thatr is close to zero, we have
tion periods of solutions belonging to the fundamental solu-T.(7)=Tg(7)=2, as has been pointed out in Sec. Ill A, and
tion will approach 2 whenr—0. On the other hand, the therefore we geT(7)=Tg(7)/(1+2k). From this one can
dependence of the oscillation period on the paramgtés  immediately recognize tha(t) is just the old harmonic so-
insensitive. For example, at=0.8, AT/Au~0.1; at 7 |ution at (r,,) and one can conclude that the parameter

=0.3, AT/Au~0.02; and atr=0.1, AT/Au~0.002. regimes of the harmonic solutions are determined by that of
the fundamental solution.
B. Odd harmonics: Particular solutions in long-time delay case We have already known that the period-1 solution of the

fundamental solution exists below the cureg= 15(u),

From Fig. 3h) we see that there exist other solutions . ) .
except the fundamental solution in the long-time delay caseV.VhereTO('“) is the Hopf blfurcat!on Vall‘.'e of the st_eady stgte
Then the (X+ 1)th harmonic solution can exist only in

Figure 4 shows several domains of the stable regions of theRy - '
in the parameter plane. Numerical calculations indicate thatthe regime below the curve

the oscillation period of the solutions in these domains is

very close toT ¢ /(2k+ 1), whereTg is the oscillation period ()= 1o()/(1+KkTg). @)
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Since 1+kTg>1, harmonic solutions must exist in the re- R

gion of small 7. In Fig. 4 we have plotted the curves of 0sd !

n(u) with k=1,2,3,4 calculated according to E@) using wed / ,(#/
the datarg(«) andTg(7g,1). These curves start at the same N /

point (7,u)=(0,0.75) and then disperse each other with; 07-g:  steadystate /

the increase of-. In the region 0.75 ©<2.2 they are lim- o,s_g; // escape

ited in the regimer<<0.2 and in the regiom>2.2 they fall | /

into the escaping regime. Thus stable odd harmonic solution: o ! / @:(Fs, M), M)

of Eq. (2) with the feedback functiori3) can only be ob- 04 I ©:(FS, M}, Mg, .M} )
served in the regime<0.2. From Fig. 4 one may notice that 0ad . ro © ©:(FS, ;M)

the curver,(u) does not coincide with the left-hand bound- 1 / ML,/ 2:(FS, 2M§'1M§’

ary of the (X+1)th harmonic domain. This is merely be- %27 [ / B:(FS: M3, M)
cause the former is the boundary for existence while the o1 — /1- g 5/ - S A

latter is for the stable solution.

An interesting phenomenon exposed in Fig. 4 is that the u
left-hand and the right-hand boundaries of the harmonic do- g, 5. Coexisting attractor domains in the moderate-time delay
mains (including that of FS) accumulate to two pointst  region. Solid-line enclosed regimes are coexisting attractor do-
=0.75 andu=1.54, respectively, when—0. The accumu- mains. The meanings of the other types of lines and symbols are the
lated pointw=0.75 can be simply explained as the left-handsame as in Fig. 4.
stable boundaries of harmonic domains will approach the
existence boundaries wherapproaches zero. The existenceinto some subsegments distributed in different parts. In this
of the accumulated point xw=1.54 can be understood in situation the oscillation period changes with the evolution of
relation to the harmonic solutions of E@) in the following  time continuously due to the recombination of the images,
way. From the well-known bifurcation diagram of the logis- which means that solutions with definite oscillation periods
tic map, we find that the value Qf =1.54 is just the value must end at the point=1.54.
where the two-piece strange attractor merges into a one-piece Contrary to the fundamental solution, the common type of
strange attractor. The images of an initial point appear at thbifurcation in the harmonic domains is the so-called cascade-
top and bottom parts divided by, alternatively in the case like bifurcation, i.e., the bifurcation after which a number of
of a two-piece strange attractor, while the visit may becomeanultistable periodic solutions appear simultaneously. This
chaotic in the case of a one-piece strange attractor. We cand of bifurcation has been discussed and explained by
indeed show that the point=1.54 is also a crisis point for Ikeda and MatsumotB]. Hopf bifurcations can also be seen
the harmonic solutions of Eq4). As a model of Eq(2) in constantly in the harmonic domains, indicating the existence
the limit of =0, Eq.(4) describes the evolution of a set of of the quasiperiodic solutions for E(R). Quasiperiodic so-
initial values in a unit interval, say,—1,0). When one sets lution regimes are marked by number signs in Fig. 4.
all the values in the interval equal ta. , the evolution of In the regimes where two or more unstable attractors ex-
Eq. (4) gives the steady staiét) =x_ . Letx, andx, be the ist, chaotic itinerancy among these unstable attractors may be
period-2 solution of the logistic map and set all the values irobserved. The regimes for chaotic itinerancy solutions are
the interval equal to;; then one getx(t)=x; for te(2n  designated by the circle-enclosed numbers in Fig. 4. The
—1,2n) and x(t)=x, for te(2n,2n+1), where n denotation K,Y,Z, ...) indicates that the trajectory may
=0,1,2 . ... This solution is the period-1 solution of Egl)  switch among the unstable attractors labeleXby,Z, .. .,
with oscillation period 2, by the definition of the Poincare where X,Y,Z, ... represent the harmonic components
section. It is the analog of the period-1 solution of E2).  Hz.; and the fundamental solutidfS.
This solution and its bifurcations contribute the fundamental
solution of Eq.(4) and correspond to the fundamental solu-
tion of Eq.(2). Dividing [ — 1,0] into 2k+ 1 subintervals and o
puttingx, andx, into them alternatively, one gets a solution ~ We have seen in Figs.(3 and 3g) that there are other
x(t)=x; for t e(2n—2k—1,2n—2k)/(2k+1) and x(t) coexisting attractors, such @M% and zMg‘. In fact, we find
=x, for te(2n—2k,2n—2k+1)/(2k+1), where n many attractors coexisting with the fundamental solution in
=0,1,2 ... andk=1,2,3.... This solution is a period-1 the moderate-time delay region. Figure 5 depicts ten domains

solution of Eq.(4) too, but with the oscillation period 2/(1 of them(denoted by,M', wheren,m, andk are integers
+2k). This solution and its bifurcations are responsible forThese domains are mainly located in the region<Or2
the (X+1)th harmonic solution of Eq4). In the case of <0.9, except the domaigM3, which extends into the re-
n<1.54, when one applies E¢4) to the initial values in a gime 7> 1. Figure 6 shows the(t) —t diagrams of solutions
subinterval, the length of the images should always remaiin several domains in the moderate-time delay region. In this
unchanged since every image is limited in a definite partfigure we also plot the evolution curves xft) in FS and
either in the top part or in the bottom one divided Xft) H%, respectively. From the appearances of the evolution
=X.. This is true even for a chaotic solution. Therefore, thecurves in these domains, together with the values of the cor-
oscillation period of a solution remains unchanged wjgen responding oscillation periods printed in the figure, one can
<1.54. Whenu exceeds this value, two or more continuousconclude that they are solutions different from the funda-
images may fall into the same part and an image may be splitental solution and the odd harmonics. It is found numeri-

C. Coexisting attractors in moderate-time delay region
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FIG. 7. Dynamics in the short-time delay region. Solid lines are
FIG. 6. Typical evolution curves in some of the coexisting at- the corresponding boundaries of the attractors appearing in this re-
tractor domains in the moderate-time delay region. For referencegion. The meanings of other types of lines and symbols are the
the evolution curves of the fundamental solution and the third harsame as in Fig. 4.

monic solution are also plotted. . L .
observable. In Fig. 5 we denote a quasiperiodic solution re-

cally that the ratio of the oscillation peridt of solutions in ~ 9'M€ induced from the Hopf bifurcation in the domain of
a domain to the oscillation pericBe in FS is usually close 2M7. Many chaotic itinerancy solution regimes are found in
to m/n, wherem is an integer anch is an odd integer. f[he _moderate-Ume delay region. We also show some of them
Therefore, we use the notatigM ™ to characterize this class N Fig: 5.

of solution, where the capital lettdf is used to indicate that

the solutions belong to the class of the moderate-time delay D. Dynamics in short-time delay region

region and the integersy and n give the ratio of T/Tg. A general belief is that there is no complex phenomenon
Additionally, solutions in two or more different domains in the short-time delay region since E@®) will approach a
may have the same ratio 37 T¢; we therefore use another normal one-dimensional ordinary differential equation. The
subscriptk to distinguish them. results in this subsection remind us that this is not the truth.
At a fixed 7, the oscillation periodl' of solutions in the With the increase ofr, a set of new attractors appears
interval of a domain along can be taken as a constant Sincecontinuously. It seems that thm/n law for T/T is broken
the interval is usually very narrovsee Fig. 3 and therefore in this region. So we denote simply the domains of these
the difference ofT alongu can be ignored. The oscillation attractors by,S, wherek=1,2,3 ... and thecapital letter
period T of the fundamental solution may change indepen-s indicates the characteristic of the short-time delay. Figure
dently of u, as we have shown in Sec. Ill A. In order to 7 shows the domains of different attractors found in the re-
obtain a definite ratio of /T at a fixedr we calculateéTe at  gion 1< 7<3.5.
wu(7)=pu(7), where u is the value at which the period-1 ~ We have described the bifurcation proces§#®in Sec.
solution inF S is superstabléi.e., with the smallest value of |II A. Surprisingly, the bifurcation process observed in every
the first Lyapunov exponentThe ratio of T/Tg for a coex-  domain in the short-time delay region is strikingly similar to
isting attractor domain may change withbut the change is  that inFS. This can be found easily when one returns to Fig.
indistinguishable as long asis not too big. Table | shows 3 and compares the bifurcation processesf,S, 3S, and
T/Tg for 2M§ and 1M} via the parameter, respectively. FS with each other. Here we just want to describe some
One can see that the value for the former is very close to 2/8etails in the adjacent regimes of two domains. In the case of
while for the latter it is close to 1/1 and the difference alongFigs. 3a)—3(c), FS shows only a period-1 solution and it is
7 can be ignored in the listed parameter region. connected with that ofS in the bifurcation diagram. In this
The most available type of bifurcation in these domains isegime, it is difficult to determine the exact boundary &
the period-doubling one, while Hopf bifurcations are alsoandFS. Actually, thex(t)-t curve in ;S seems more similar

TABLE I. T/Tg of ,M3 and ;M1 via 7.

T w Tr p(GM3)  TMY  TMH)/TE T M Te p(iM})  TGMD  TGMD/TE

0.9 2.9 3.08 4.92 2.00 0.65 0.4 1.5 2.65 2.37 2.67 1.01
0.8 2.6 3.01 4.42 1.97 0.65 0.35 1.4 2.58 2.195 2.60 1.01
0.7 2.3 2.94 4.10 1.95 0.66 0.3 1.4 2.52 1.958 2.50 0.99
0.6 2.0 2.86 3.65 1.90 0.66 0.25 1.3 2.44 1.85 2.42 0.99

0.5 1.8 2.76 3.40 1.87 0.67 0.2 1.2 2.36 1.6645 2.34 0.99
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FIG. 9. Chaotic itinerancy betweey$ and ,S.
(b) into the moderate-time delay region and disappears at
o7t " > s ~0.42. In the moderate-time delay region the ratio of the
,S, 1=1.5, 4=9.42 t oscillation period of solutions in this domain to that in the
07 fundamental solution approaches a rational fracti®nT¢
=2/3), which is a common characteristic of the solutions in
< % the moderate-time delay region. Thus we include the part of
o7 . . (c) the domain in the region of<1 in the class discussed in
0 10 ) 20 s Sec. lll C and mark this part agM3.
0485 =85, p=31.45 Chaotic itinerancy solutions can be observed in relatively
’ large regimes in this regiofsee Figure ¥ Fig. 9 shows a
O'O'M chaaotic itinerancy solution found in the regime denoted by
a the circle-enclosed 10.
0.4 T . )
0 10 . 2 80 IV. CONCLUSIONS
FIG. 8. Evolution curves of solutions i@ FS, (b) 1S, (c) ,S, _ In conclu_smn, we |nvest|gate_d in detail a DDE with a
and(d) 5S. simple nonlinear feedback function in the parameter plane

and explored a more general scenario of the dynamical be-
) o o _ haviors in the delayed feedback optical systems. In the case
to that inFS. In this situation we divide the two domains ¢ long-time delay we observed the odd harmonic solutions
only by observing the bifurcation diagram, i.e., we take theyhose behaviors agree with the scenario of Ikeda and co-
value of u where an obvious change on the bifurcation dia-workers[2,3]. We explained why this kind of solution can
gram can be seen as the boundary of the two domains. Wheshly be observed in the long-time delay case. In addition, we
we decreaser to 7=2.9, FS and ;S begin to disconnect found that the left-hand boundaries and the right-hand
from each other in the bifurcation diagram. The bifurcationpoundaries of the stable odd harmonics domains as well as
diagram in the adjacent region exhibits a typical bistability F S in the parameter plane accumulate at two points, respec-
when7<2.9; see Fig. @l). Again, this picture is suitable for tjyely, when r tends to zero. In the case of moderate-time
the adjacent regimes ofS and ,S, ,S and 3S, etc. On the  delay, we found a set of attractors with oscillation periods
other hand, though the appearance of %f€)-t curves in  approachingmT:/n, wherem is an integer,n is an odd
these domains are different, from Fig. 8 one can find simiinteger, andT is the oscillation period of the fundamental
larities between them: The solution & has only one peak solution. When we investigated the short-time delay region,
within one period, the solution igS has another small peak, we recognized that there exists another family of stable so-
and the solutions inS and ;S have more and more peaks |utions. The solutions in this family have similar bifurcation
with smaller and smaller amplitude. We have investigatethrocesses and appearances. The existence of these solutions
the region untilr=100 and found that the similarities remain indicates that one can find chaotic solutions even when the
for all the continuously appearing attractors. delay time is very short, provide the parameteris large
From Fig. 3 one can find that the scale of the bifurcationenough. The fundamental solution and the odd harmonics of
diagrams of,S increases along the horizontal direction andthe DDE have analogs in E¢4), i.e., the model of the sys-
decreases along the vertical direction with the increade of tem (2) in the limiting case ofr=0. The two classes of the
We have compared the bifurcation diagramsg8fwith each  solutions found in the moderate- and short-time delay cases
other at their critical values of,, wherer, is chosen to be have no counterparts in the modelof 0. We would like to
the value below which the second period-doubling bifurcapoint out that, to our knowledge, these two classes of solu-
tion of the period-1 periodic solution iRS will take place. tions have not been reported in previous studies related to
Our calculations show that, increases exponentially when delayed feedback systems. Besides the types of solutions
k increases. For each value nf we measured the length of mentioned above, our results also show that the chaotic itin-
ou(S) of the period-2 periodic solution in the direction of erancy phenomenon and quasiperiodic motion can be ob-
n and use it to characterize the scale & along the hori- served in a wide region in the parameter plane of the DDE.
zontal direction. According to our numerical results, the Finally, we would like to emphasize that the dynamics
scale of S increases exponentially along the horizontal di-described in this paper is a general feature of the delayed
rection and decreases exponentially in the vertical directionfeedback optical systems. As pointed out in the Introduction,
From Fig. 7 we see that the domains & all end before the feedback function used in the present paper can be con-
7<1 except the domain ofS. The ;S domain is extended sidered as the first nonlinear term of the Taylor expansion of
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a general nonlinear function in the vicinity of a steady statethe bifurcation diagram of the model ir=0. On the other
and therefore one can expect that it should keep the generahnd, nonlinear functions other than the logistic form may
properties of these kinds of delay feedback systems. In fachave more than one stable steady state. These states may
we have studied Eq(2) with f(x,u)=mu[l+2Bcosk induce fundamental solutions and other types of solutions
—Xo)], the model Ikeda and co-workerd;(x,u)=n[A mentioned above independently and the induced solutions
— usirf(x—xg)], the Vallee model; f(x,u)=usSirf(x—xy),  mMay merge into large attractors in certain parameter regimes.
the sine-square model; and other nonlinear functions. The
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