
PHYSICAL REVIEW E OCTOBER 1998VOLUME 58, NUMBER 4
Dynamics in a system with time-delayed feedback
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In this paper we study the dynamical solutions of a differential delay equation related to optical bistability.
Besides the fundamental solution and the odd harmonic solution, we report different types of solutions found
in moderate- and short-time delay regions, which to our knowledge, have not been discussed in earlier publi-
cations. In addition, we also study the quasiperiodic motion and the chaotic itinerancy solution of the equation.
The phenomena reported in this paper are found to be the general features of delayed feedback optical systems.
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I. INTRODUCTION

In recent years, optical feedback systems governed by
ferential delayed equations~DDE’s! have attracted much at
tention from both the applied and the fundamental points
view @1–13#. Some properties of these systems have b
exposed, such as the odd harmonic solutions@1–3# whose
oscillation period is given byTF /(2k11), where k
51,2,3, . . . andTF is the period of the fundamental motion
the frequency locking and quasiperiodicity following the h
erarchy of the Farey tree@4–8#; and the chaotic itinerancy
phenomenon@9–11#, the phenomenon that a dynamical sy
tem switches among different unstable local chaotic orbits
a time scale long compared to the dynamics on each attra
ruin. These features, however, are summarized from diffe
systems. Questions arising from the above observations
the following. Can we meet all these phenomena in ev
optical system governed by DDE’s? Can we find any ot
types of solutions in these kinds of systems?

In general, the delay-differential system related to opti
bistable or hybrid optical bistable device is described by

t8ẋ~ t !52x~ t !1 f „x~ t2tR!,m…, ~1!

wherex(t) is the dimensionless output of the system at ti
t, tR is the time delay of the feedback loop,t8 is the re-
sponse time of the nonlinear medium, and the parameterm is
proportional to the intensity of the incident light. Measurin
the time in units oftR , we rewrite Eq.~1! as

t ẋ~ t !52x~ t !1 f „x~ t21!,m…, ~2!

wheret5t8/tR characterizes the effect of the delay whent8
is fixed. In this paper we study Eq.~2! with the special feed-
back function

f ~x,m!512mx2. ~3!

This feedback function can be considered as the first non
ear term of the Taylor expansion of the general nonlin
function f (x,m) in the vicinity of a steady state. It shoul
keep the general nonlinear properties of the delay feedb
PRE 581063-651X/98/58~4!/4383~8!/$15.00
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system, as pointed out by Li and Hao@12#. In the limiting
case oft50, Eq. ~2! reduces to

x~ t !5 f „x~ t21!,m…. ~4!

For the specific choice of the feedback function, Eq.~4! is
just the logistic model. As the logistic model plays a cruc
role in understanding the common behavior of lo
dimensional dissipative nonlinear systems, we expect
Eq. ~2! with the feedback function~3! may provide us with a
fundamental scenario for the dynamics in systems with
layed feedback.

We organize this paper as follows. In Sec. II numeric
methods used in the paper are introduced. These method
applied to identify different types of dynamical states.
Sec. III numerical results are presented. After clarifying t
fundamental solution of the system in Sec. III A, we descr
different types of solutions found in the long-, moderat
and short-time delay regions in Secs. III B, III C, and III
respectively. Section IV summarizes the main findings of
paper. In this section we also discuss to what extent
dynamical behaviors reported in the paper are the gen
features of the delayed feedback systems.

II. NUMERICAL METHODS

Equation~2! can only be solved numerically and a fourt
order Adam’s interpolation is suitable for that. In order
trace the evolution of a DDE, one might investigate the e
lution curve of the variablex(t). However, it is difficult to
distinguish different solutions if one only observes thex(t)-t
relation. Some of us have described a method in Ref.@8#,
where we represented the solutions of a one-variable D
by using the Poincare´ section technique. This method ha
proved to be a useful tool in exploring the coexisting attra
tors. Let us review this method briefly. Letxt(u)[x(t
1u), 21<u<0; then xt2

(u) is determined byxt1
(u)

uniquely according to Eq.~2!, where t1,t2 . We approach
the section mapping as follows. We choose an appropr
constantxcPR; integrate Eq.~2! numerically until x(t)
.xc andx(t1h),xc , whereh is the length of the integrat
ing step; and then proceed with a simulation procedure
4383 © 1998 The American Physical Society



q.

in

n

in
w

o-

n of

lla-
ower

the
rac-

pec-

re
their
al.
ing
are
lly,
r’s

4384 PRE 58ZHAO HONG et al.
apply Hénon’s idea@14# to get t i as well asxti
(u) such that

xti
(0)5xc . To simplify, we denotexti

(u) as xi(u) in the
following discussion. In this way we convert the flow of E
~2! into a mapping that maps the curvexi(u) onto the curve
xi 11(u). We regard this curve-to-curve mapping as the Po
caré map of a DDE. A periodic solution of Eq.~2! with
periodT, x(t)5x(t1T), corresponds to a periodic solutio
of the Poincare´ map with periodN, xi(u)5xi 1N(u), where
N is an integer. For practical applications, we can taken
discrete pointsxi(u j ) on the curvexi(u) to represent the
solution, whereu jP(21,0) and j 51,2, . . . ,n. Then the
curve-to-curve mapping appears as a point-to-point mapp
in Rn. In order to exhibit the coexisting attractors or sho

FIG. 1. Coexisting attractors att50.81 andm54.619.
-

g

the bifurcation process, we usually need only a tw
dimensional mapping representation@xi(u1),xi(u2)# or a
one-dimensional mapping representationxi(u1). Figure 1
demonstrates a two-dimensional mapping representatio
the solutions of Eq.~2! with the feedback function~3!, where
three coexisting attractors denoted byFS, M , and M 8 are
shown in thexi(20.08)-xi(20.2) plane.

After obtaining the Poincare´ map, we use the definition

T5 lim
i→`

1

i ( ~ t i 112t i ! ~5!

to characterize the oscillation period ofx(t). To identify
different dynamical states, we usually compare the osci
tion periods, see the appearances, and analyze the p
spectra of them. Figure 2 shows the appearances and
corresponding power spectra of solutions in the three att
tors marked in Fig. 1.T1 , T2 , andT3 in the figure are the
oscillation periods of solutions inFS, M , andM 8, respec-
tively. One can find thatFS andM belong to different types:
The oscillation periods, the appearances, and the power s
tra of solutions in them are unalike. The solutions inM and
M 8 belong to the same type: Their oscillation periods a
close to each other, their appearances are similar, and
main components in the power spectra are identic
Throughout the paper, when we mention solutions belong
to the same or different types we actually mean that they
identified to be so according to the above procedure. Fina
in order to study the bifurcation process we employ Farme
technique@13# to calculate the Lyapunov exponents.
FIG. 2. Evolution curves and power spectra of the three coexisting attractors shown in Fig. 1 for~a! and (a8) FS, ~b! and (b8) M , and
~c! and (c8)M 8.
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FIG. 3. Bifurcation phenomena of the system.FS, the fundamental solution;kS, the short-time delay solutions;kMn
m , the moderate-time

delay solutions;Hn
1 , the harmonic solutions. See the text for more details.
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III. RESULTS

A. Fundamental solution of the system

Equations~2! and ~4! have the same steady statesx65
(216A114m)/2m in the specific choice of the feedbac
function ~3!. These two steady states are created atm5
21/4 through tangential bifurcation. It is found thatx1 is
stable in the regime of21/4,m,m0(t) while x2 is always
unstable in the case oft.0. We call the parameter regime i
which x1 is stable ‘‘steady state’’ regime in this paper.

At m5m0(t), the steady statex1 bifurcates into a limit
cycle through the Hopf bifurcation. The limit cycle appea
as a period-1 solution of the Poincare´ map of Eq.~2!; there-
fore, we call it the period-1 periodic solution of the syste
Figure 3 shows the bifurcation diagram@which is represented
by xi(20.08)2m] originating from the period-1 periodic so
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lution, which is denoted byFS. The solutions inFS appear
as square waves with oscillation period 2 whent approaches
zero. They are the analogs of the fundamental solution of
model ~4!. Therefore, we regardFS as the fundamental so
lution of the system.

Numerical calculations indicate that there exist ma
separated attractors besidesFS in the parameter plane. In
Fig. 3 we show some of them. These solutions can be c
sified into different classes. Solutions in the first class, e
theF8S8 marked in Fig. 3~f!, possess approximate oscillatio
periods, similar appearances, and power spectra to t
analogous ofFS. In fact, tracking them on the paramet
plane with the decrease oft, we find that they must merg
into FS at a certain value oft, i.e., they turn to the periodic
windows ofFS. Therefore, this class of coexisting attract
should be included in the category of the fundamental so
tion. The other three classes of solutions are indeed spe
solutions in the long-time delay region~the solutions denoted
by Hn

1 , with n an odd integer!, moderate-time delay regio
~the solutions denoted bykMn

m , with k, m, n and integers!,
and short-time delay region~the solutions denoted bykS,
with k an integer!. These solutions will be discussed in det
in the following subsections.

In the present subsection we describe the bifurcation p
cess of the fundamental solution only. In the regime thatt is
very large or, identically, the delay timetR is very short,FS
shows no bifurcation. It is connected with a periodic soluti
of another dynamical state1S @see Figs. 3~a!–3~c!#. With the
decrease oft, FS begins to disconnect from1S at t52.9.
Below this value,FS and 1S coexist in a certain paramete
region; see Figs. 3~d!–3~g!. ~In the region oft,1, 1S is
marked by2M3

2 , which will be explained in Sec. III D.! At
t51.13, FS undergoes the first period-doubling bifurcatio
Figure 3~e! shows a bifurcation diagram just below th
value. When decreasingt continuously, period-doubling bi
furcations with higher and higher order take place until c
otic solutions appear att50.84.FS exhibits similar bifurca-
tion behavior, as shown in Fig. 3~f!, in the region of 0.84
.t.0.76. In the region oft,0.76 the bifurcation diagram
of FS is divided into two parts by an embedded escap
region; see Fig. 3~g!. The right-hand part disappears att
50.64 and the left-hand part survives untilt50.

Finally, for the convenience of later discussion, let us
scribe briefly the dependence of the oscillation period of
fundamental solution on the system parametersm andt. In
the region thatt is not very large the oscillation period in
creases asT;213t/2 with the increase oft. Thus oscilla-
tion periods of solutions belonging to the fundamental so
tion will approach 2 whent→0. On the other hand, th
dependence of the oscillation period on the parameterm is
insensitive. For example, att50.8, DT/Dm'0.1; at t
50.3, DT/Dm'0.02; and att50.1, DT/Dm'0.002.

B. Odd harmonics: Particular solutions in long-time delay case

From Fig. 3~h! we see that there exist other solutio
except the fundamental solution in the long-time delay ca
Figure 4 shows several domains of the stable regions of t
in the parameter plane. Numerical calculations indicate
the oscillation period of the solutions in these domains
very close toTF /(2k11), whereTF is the oscillation period
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of the fundamental solution at the same value oft and k
51,2,3, . . . . Thus they are just the odd harmonic solutio
of the system. The odd harmonic solution has been foun
be a general feature of the delayed feedback optical syst
@1–3#. In this paper we use the notationH2k11

1 to character-
ize the harmonic solution, i.e., the capital letterH represents
the ‘‘harmonic solution’’ while the superscript and the su
script indicate the ratio of the oscillation period of the ha
monic solution to that of the fundamental solution.

In fact, we can show that the odd harmonic motion is t
particular behavior of the system in the long-time delay ca
Let x(t) be a period-1 solution of the fundamental solution
(t,m) and TF(t) denote its period. Sincex(t2kTF)5x(t)
(k is any integer!, x(t) satisfiest ẋ(t)52x(t)1 f „x(t21
2kTF),m…. By measuring the timet with 11kTF , one can
rewrite this equation astkẋ(t)52x(t)1 f „x(t21),m…,
where tk5t/(11kTF). This means thatx(t) is also a
period-1 solution of Eq.~2! with period

T~tk!5TF~t!/@11kTF~t!# ~6!

at tk5t/@11kTF(t)#. Let TF(tk) be the oscillation period
of the period-1 solution of the fundamental solution
(tk ,m). In the region thatt is close to zero, we have
TF(t).TF(tk).2, as has been pointed out in Sec. III A, an
therefore we getT(tk)5TF(tk)/(112k). From this one can
immediately recognize thatx(t) is just the old harmonic so
lution at (tk ,m) and one can conclude that the parame
regimes of the harmonic solutions are determined by tha
the fundamental solution.

We have already known that the period-1 solution of t
fundamental solution exists below the curvet05t0(m),
wheret0(m) is the Hopf bifurcation value of the steady sta
x1 . Then the (2k11)th harmonic solution can exist only i
the regime below the curve

tk~m!5t0~m!/~11kTF!. ~7!

FIG. 4. Domains of the different dynamical states in the lon
time delay region. Dot-dashed lines, boundaries of the escaping
bounded solution regimes; dashed lines, boundaries of the fu
mental solution; solid lines, boundaries of the haramonic solutio
# denotes the regime where quasiperiodic solutions can be fo
The circle-enclosed numbers mark the chaotic itinerancy regim
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Since 11kTF@1, harmonic solutions must exist in the r
gion of small t. In Fig. 4 we have plotted the curves o
tk(m) with k51,2,3,4 calculated according to Eq.~7! using
the datat0(m) andTF(t0 ,m). These curves start at the sam
point (t,m)5(0,0.75) and then disperse each other w
the increase oft. In the region 0.75,m,2.2 they are lim-
ited in the regimet,0.2 and in the regionm.2.2 they fall
into the escaping regime. Thus stable odd harmonic solut
of Eq. ~2! with the feedback function~3! can only be ob-
served in the regimet,0.2. From Fig. 4 one may notice tha
the curvetk(m) does not coincide with the left-hand boun
ary of the (2k11)th harmonic domain. This is merely be
cause the former is the boundary for existence while
latter is for the stable solution.

An interesting phenomenon exposed in Fig. 4 is that
left-hand and the right-hand boundaries of the harmonic
mains ~including that ofFS) accumulate to two points,m
50.75 andm51.54, respectively, whent→0. The accumu-
lated pointm50.75 can be simply explained as the left-ha
stable boundaries of harmonic domains will approach
existence boundaries whent approaches zero. The existen
of the accumulated point m51.54 can be understood i
relation to the harmonic solutions of Eq.~4! in the following
way. From the well-known bifurcation diagram of the logi
tic map, we find that the value ofm51.54 is just the value
where the two-piece strange attractor merges into a one-p
strange attractor. The images of an initial point appear at
top and bottom parts divided byx1 alternatively in the case
of a two-piece strange attractor, while the visit may beco
chaotic in the case of a one-piece strange attractor. We
indeed show that the pointm51.54 is also a crisis point fo
the harmonic solutions of Eq.~4!. As a model of Eq.~2! in
the limit of t50, Eq. ~4! describes the evolution of a set o
initial values in a unit interval, say,@21,0). When one sets
all the values in the interval equal tox1 , the evolution of
Eq. ~4! gives the steady statex(t)5x1 . Let x1 andx2 be the
period-2 solution of the logistic map and set all the values
the interval equal tox1 ; then one getsx(t)5x1 for tP(2n
21,2n) and x(t)5x2 for tP(2n,2n11), where n
50,1,2, . . . . This solution is the period-1 solution of Eq.~4!
with oscillation period 2, by the definition of the Poinca´
section. It is the analog of the period-1 solution of Eq.~2!.
This solution and its bifurcations contribute the fundamen
solution of Eq.~4! and correspond to the fundamental so
tion of Eq.~2!. Dividing @21,0# into 2k11 subintervals and
puttingx1 andx2 into them alternatively, one gets a solutio
x(t)5x1 for t P(2n22k21,2n22k)/(2k11) and x(t)
5x2 for tP(2n22k,2n22k11)/(2k11), where n
50,1,2, . . . andk51,2,3, . . . . This solution is a period-1
solution of Eq.~4! too, but with the oscillation period 2/(1
12k). This solution and its bifurcations are responsible
the (2k11)th harmonic solution of Eq.~4!. In the case of
m,1.54, when one applies Eq.~4! to the initial values in a
subinterval, the length of the images should always rem
unchanged since every image is limited in a definite p
either in the top part or in the bottom one divided byx(t)
5xc . This is true even for a chaotic solution. Therefore, t
oscillation period of a solution remains unchanged whenm
,1.54. Whenm exceeds this value, two or more continuo
images may fall into the same part and an image may be
ns

e

e
o-

e

ce
e

e
an

n

l
-

r

in
t,

e

lit

into some subsegments distributed in different parts. In
situation the oscillation period changes with the evolution
time continuously due to the recombination of the imag
which means that solutions with definite oscillation perio
must end at the pointm51.54.

Contrary to the fundamental solution, the common type
bifurcation in the harmonic domains is the so-called casca
like bifurcation, i.e., the bifurcation after which a number
multistable periodic solutions appear simultaneously. T
kind of bifurcation has been discussed and explained
Ikeda and Matsumoto@3#. Hopf bifurcations can also be see
constantly in the harmonic domains, indicating the existe
of the quasiperiodic solutions for Eq.~2!. Quasiperiodic so-
lution regimes are marked by number signs in Fig. 4.

In the regimes where two or more unstable attractors
ist, chaotic itinerancy among these unstable attractors ma
observed. The regimes for chaotic itinerancy solutions
designated by the circle-enclosed numbers in Fig. 4. T
denotation (X,Y,Z, . . . ) indicates that the trajectory ma
switch among the unstable attractors labeled byX,Y,Z, . . . ,
where X,Y,Z, . . . represent the harmonic componen
H2k11

1 and the fundamental solutionFS.

C. Coexisting attractors in moderate-time delay region

We have seen in Figs. 3~f! and 3~g! that there are othe
coexisting attractors, such as2M3

2 and 2M5
4 . In fact, we find

many attractors coexisting with the fundamental solution
the moderate-time delay region. Figure 5 depicts ten dom
of them ~denoted bykMn

m , wheren,m, andk are integers!.
These domains are mainly located in the region 0.2,t
,0.9, except the domain2M3

2 , which extends into the re
gimet.1. Figure 6 shows thex(t)2t diagrams of solutions
in several domains in the moderate-time delay region. In
figure we also plot the evolution curves ofx(t) in FS and
H3

1 , respectively. From the appearances of the evolut
curves in these domains, together with the values of the
responding oscillation periods printed in the figure, one c
conclude that they are solutions different from the fund
mental solution and the odd harmonics. It is found nume

FIG. 5. Coexisting attractor domains in the moderate-time de
region. Solid-line enclosed regimes are coexisting attractor
mains. The meanings of the other types of lines and symbols are
same as in Fig. 4.
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cally that the ratio of the oscillation periodT of solutions in
a domain to the oscillation periodTF in FS is usually close
to m/n, where m is an integer andn is an odd integer.
Therefore, we use the notationkMn

m to characterize this clas
of solution, where the capital letterM is used to indicate tha
the solutions belong to the class of the moderate-time d
region and the integersm and n give the ratio ofT/TF .
Additionally, solutions in two or more different domain
may have the same ratio ofT/TF ; we therefore use anothe
subscriptk to distinguish them.

At a fixed t, the oscillation periodT of solutions in the
interval of a domain alongm can be taken as a constant sin
the interval is usually very narrow~see Fig. 5! and therefore
the difference ofT alongm can be ignored. The oscillatio
periodTF of the fundamental solution may change indepe
dently of m, as we have shown in Sec. III A. In order t
obtain a definite ratio ofT/TF at a fixedt we calculateTF at
m(t)5m̄(t), where m̄ is the value at which the period-
solution inFS is superstable~i.e., with the smallest value o
the first Lyapunov exponent!. The ratio ofT/TF for a coex-
isting attractor domain may change witht, but the change is
indistinguishable as long ast is not too big. Table I shows
T/TF for 2M3

2 and 1M1
1 via the parametert, respectively.

One can see that the value for the former is very close to
while for the latter it is close to 1/1 and the difference alo
t can be ignored in the listed parameter region.

The most available type of bifurcation in these domains
the period-doubling one, while Hopf bifurcations are al

FIG. 6. Typical evolution curves in some of the coexisting
tractor domains in the moderate-time delay region. For refere
the evolution curves of the fundamental solution and the third h
monic solution are also plotted.
y

-

/3

s

observable. In Fig. 5 we denote a quasiperiodic solution
gime induced from the Hopf bifurcation in the domain

2M7
6 . Many chaotic itinerancy solution regimes are found

the moderate-time delay region. We also show some of th
in Fig. 5.

D. Dynamics in short-time delay region

A general belief is that there is no complex phenomen
in the short-time delay region since Eq.~2! will approach a
normal one-dimensional ordinary differential equation. T
results in this subsection remind us that this is not the tru

With the increase oft, a set of new attractors appea
continuously. It seems that them/n law for T/TF is broken
in this region. So we denote simply the domains of the
attractors bykS, wherek51,2,3, . . . and thecapital letter
S indicates the characteristic of the short-time delay. Fig
7 shows the domains of different attractors found in the
gion 1,t,3.5.

We have described the bifurcation process inFS in Sec.
III A. Surprisingly, the bifurcation process observed in eve
domain in the short-time delay region is strikingly similar
that inFS. This can be found easily when one returns to F
3 and compares the bifurcation processes of1S, 2S, 3S, and
FS with each other. Here we just want to describe so
details in the adjacent regimes of two domains. In the cas
Figs. 3~a!–3~c!, FS shows only a period-1 solution and it i
connected with that of1S in the bifurcation diagram. In this
regime, it is difficult to determine the exact boundary of1S
andFS. Actually, thex(t)-t curve in 1S seems more similar

-
e,
r-

FIG. 7. Dynamics in the short-time delay region. Solid lines a
the corresponding boundaries of the attractors appearing in thi
gion. The meanings of other types of lines and symbols are
same as in Fig. 4.
TABLE I. T/TF of 2M3
2 and 1M1

1 via t.

t m̄ TF m(2M3
2) T(2M3

2) T(2M3
2)/TF t m̄ TF m(1M1

1) T(1M1
1) T(1M1

1)/TF

0.9 2.9 3.08 4.92 2.00 0.65 0.4 1.5 2.65 2.37 2.67 1.01
0.8 2.6 3.01 4.42 1.97 0.65 0.35 1.4 2.58 2.195 2.60 1.01
0.7 2.3 2.94 4.10 1.95 0.66 0.3 1.4 2.52 1.958 2.50 0.99
0.6 2.0 2.86 3.65 1.90 0.66 0.25 1.3 2.44 1.85 2.42 0.99
0.5 1.8 2.76 3.40 1.87 0.67 0.2 1.2 2.36 1.6645 2.34 0.99
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to that in FS. In this situation we divide the two domain
only by observing the bifurcation diagram, i.e., we take
value ofm where an obvious change on the bifurcation d
gram can be seen as the boundary of the two domains. W
we decreaset to t52.9, FS and 1S begin to disconnec
from each other in the bifurcation diagram. The bifurcati
diagram in the adjacent region exhibits a typical bistabi
whent,2.9; see Fig. 3~d!. Again, this picture is suitable fo
the adjacent regimes of1S and 2S, 2S and 3S, etc. On the
other hand, though the appearance of thex(t)-t curves in
these domains are different, from Fig. 8 one can find si
larities between them: The solution inFS has only one peak
within one period, the solution in1S has another small peak
and the solutions in2S and 3S have more and more peak
with smaller and smaller amplitude. We have investiga
the region untilt5100 and found that the similarities rema
for all the continuously appearing attractors.

From Fig. 3 one can find that the scale of the bifurcat
diagrams ofkS increases along the horizontal direction a
decreases along the vertical direction with the increase ok.
We have compared the bifurcation diagrams ofkS with each
other at their critical values oftk , wheretk is chosen to be
the value below which the second period-doubling bifur
tion of the period-1 periodic solution inkS will take place.
Our calculations show thattk increases exponentially whe
k increases. For each value oftk we measured the length o
dm(kS) of the period-2 periodic solution in the direction o
m and use it to characterize the scale ofkS along the hori-
zontal direction. According to our numerical results, t
scale of kS increases exponentially along the horizontal
rection and decreases exponentially in the vertical direct

From Fig. 7 we see that the domains ofkS all end before
t,1 except the domain of1S. The 1S domain is extended

FIG. 8. Evolution curves of solutions in~a! FS, ~b! 1S, ~c! 2S,
and ~d! 3S.
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into the moderate-time delay region and disappears at
;0.42. In the moderate-time delay region the ratio of t
oscillation period of solutions in this domain to that in th
fundamental solution approaches a rational fraction (T/TF
52/3), which is a common characteristic of the solutions
the moderate-time delay region. Thus we include the par
the domain in the region oft,1 in the class discussed i
Sec. III C and mark this part as2M3

2 .
Chaotic itinerancy solutions can be observed in relativ

large regimes in this region~see Figure 7!. Fig. 9 shows a
chaotic itinerancy solution found in the regime denoted
the circle-enclosed 10.

IV. CONCLUSIONS

In conclusion, we investigated in detail a DDE with
simple nonlinear feedback function in the parameter pla
and explored a more general scenario of the dynamical
haviors in the delayed feedback optical systems. In the c
of long-time delay we observed the odd harmonic solutio
whose behaviors agree with the scenario of Ikeda and
workers @2,3#. We explained why this kind of solution ca
only be observed in the long-time delay case. In addition,
found that the left-hand boundaries and the right-ha
boundaries of the stable odd harmonics domains as we
FS in the parameter plane accumulate at two points, resp
tively, when t tends to zero. In the case of moderate-tim
delay, we found a set of attractors with oscillation perio
approachingmTF /n, where m is an integer,n is an odd
integer, andTF is the oscillation period of the fundament
solution. When we investigated the short-time delay regi
we recognized that there exists another family of stable
lutions. The solutions in this family have similar bifurcatio
processes and appearances. The existence of these sol
indicates that one can find chaotic solutions even when
delay time is very short, provide the parameterm is large
enough. The fundamental solution and the odd harmonic
the DDE have analogs in Eq.~4!, i.e., the model of the sys
tem ~2! in the limiting case oft50. The two classes of the
solutions found in the moderate- and short-time delay ca
have no counterparts in the model oft50. We would like to
point out that, to our knowledge, these two classes of so
tions have not been reported in previous studies relate
delayed feedback systems. Besides the types of solut
mentioned above, our results also show that the chaotic
erancy phenomenon and quasiperiodic motion can be
served in a wide region in the parameter plane of the DD

Finally, we would like to emphasize that the dynami
described in this paper is a general feature of the dela
feedback optical systems. As pointed out in the Introducti
the feedback function used in the present paper can be
sidered as the first nonlinear term of the Taylor expansion

FIG. 9. Chaotic itinerancy between1S and 2S.
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a general nonlinear function in the vicinity of a steady st
and therefore one can expect that it should keep the gen
properties of these kinds of delay feedback systems. In f
we have studied Eq.~2! with f (x,m)5pm@112B cos(x
2x0)#, the model Ikeda and co-workers;f (x,m)5p@A
2msin2(x2x0)#, the Vallée model; f (x,m)5msin2(x2x0),
the sine-square model; and other nonlinear functions.
global behaviors related to the delay time, i.e., the fundam
tal solution, the harmonic solution, and new types of so
tions observed in the moderate- and the short-time delay
gions, can all be found with the variation of the delay tim
The details are more complex than the case of the log
form. On the one hand, the structure of the bifurcation d
gram for a specific attractor, i.e., the structure of the perio
windows, is determined by the functionf and is similar to
r,
e
ral
t,

e
n-
-
e-
.
ic
-
ic

the bifurcation diagram of the model int50. On the other
hand, nonlinear functions other than the logistic form m
have more than one stable steady state. These states
induce fundamental solutions and other types of soluti
mentioned above independently and the induced solut
may merge into large attractors in certain parameter regim
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